Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3156, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605017

RESUMO

Modulating brain oscillations has strong therapeutic potential. Interventions that both non-invasively modulate deep brain structures and are practical for chronic daily home use are desirable for a variety of therapeutic applications. Repetitive audio-visual stimulation, or sensory flicker, is an accessible approach that modulates hippocampus in mice, but its effects in humans are poorly defined. We therefore quantified the neurophysiological effects of flicker with high spatiotemporal resolution in patients with focal epilepsy who underwent intracranial seizure monitoring. In this interventional trial (NCT04188834) with a cross-over design, subjects underwent different frequencies of flicker stimulation in the same recording session with the effect of sensory flicker exposure on local field potential (LFP) power and interictal epileptiform discharges (IEDs) as primary and secondary outcomes, respectively. Flicker focally modulated local field potentials in expected canonical sensory cortices but also in the medial temporal lobe and prefrontal cortex, likely via resonance of stimulated long-range circuits. Moreover, flicker decreased interictal epileptiform discharges, a pathological biomarker of epilepsy and degenerative diseases, most strongly in regions where potentials were flicker-modulated, especially the visual cortex and medial temporal lobe. This trial met the scientific goal and is now closed. Our findings reveal how multi-sensory stimulation may modulate cortical structures to mitigate pathological activity in humans.


Assuntos
Epilepsias Parciais , Epilepsia , Humanos , Camundongos , Animais , Eletroencefalografia , Encéfalo , Lobo Temporal
2.
Epilepsy Behav ; 142: 109207, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37075511

RESUMO

OBJECTIVE: The impact of responsive neurostimulation (RNS) on neuropsychiatric and psychosocial outcomes has not been extensively evaluated outside of the original clinical trials and post-approval studies. The goal of this study was to ascertain the potential real-world effects of RNS on cognitive, psychiatric, and quality of life (QOL) outcomes in relation to seizure outcomes by examining 50 patients undergoing RNS implantation for drug-resistant epilepsy (DRE). METHODS: We performed a retrospective review of all patients treated at our institution with RNS for DRE with at least 12 months of follow-up. In addition to baseline demographic and disease-related characteristics, we collected cognitive (Full-Scale Intelligence Quotient, Verbal Comprehension, and Perceptual Reasoning Index), psychiatric (Beck Depression and Anxiety Inventory Scores), and QOL (QOLIE-31) outcomes at 6 and 12 months after RNS implantation and correlated them with seizure outcomes. RESULTS: Fifty patients (median age 39.5 years, 64% female) were treated with RNS for DRE in our institution from 2005 to 2020. Of the 37 of them who had well-documented pre and post-implantation seizure diaries, the 6-month median seizure frequency reduction was 88%, the response rate (50% or greater seizure frequency reduction) was 78%, and 32% of patients were free of disabling seizures in this timeframe. There was no statistically significant difference at a group level in any of the evaluated cognitive, psychiatric, and QOL outcomes at 6 and 12 months post-implantation compared to the pre-implantation baseline, irrespective of seizure outcomes, although a subset of patients experienced a decline in mood or cognitive variables. SIGNIFICANCE: Responsive neurostimulation does not appear to have a statistically significant negative or positive impact on neuropsychiatric and psychosocial status at the group level. We observed significant variability in outcome, with a minority of patients experiencing worse behavioral outcomes, which seemed related to RNS implantation. Careful outcome monitoring is required to identify the subset of patients experiencing a poor response and to make appropriate adjustments in care.


Assuntos
Epilepsia Resistente a Medicamentos , Qualidade de Vida , Humanos , Feminino , Adulto , Masculino , Epilepsia Resistente a Medicamentos/terapia , Estudos Retrospectivos , Convulsões , Resultado do Tratamento
3.
medRxiv ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36993248

RESUMO

Modulating brain oscillations has strong therapeutic potential. However, commonly used non-invasive interventions such as transcranial magnetic or direct current stimulation have limited effects on deeper cortical structures like the medial temporal lobe. Repetitive audio-visual stimulation, or sensory flicker, modulates such structures in mice but little is known about its effects in humans. Using high spatiotemporal resolution, we mapped and quantified the neurophysiological effects of sensory flicker in human subjects undergoing presurgical intracranial seizure monitoring. We found that flicker modulates both local field potential and single neurons in higher cognitive regions, including the medial temporal lobe and prefrontal cortex, and that local field potential modulation is likely mediated via resonance of involved circuits. We then assessed how flicker affects pathological neural activity, specifically interictal epileptiform discharges, a biomarker of epilepsy also implicated in Alzheimer's and other diseases. In our patient population with focal seizure onsets, sensory flicker decreased the rate interictal epileptiform discharges. Our findings support the use of sensory flicker to modulate deeper cortical structures and mitigate pathological activity in humans.

4.
Epilepsia ; 63(9): 2290-2300, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35704344

RESUMO

OBJECTIVE: Based on the promising results of randomized controlled trials, deep brain stimulation (DBS) and responsive neurostimulation (RNS) are used increasingly in the treatment of patients with drug-resistant epilepsy. Drug-resistant temporal lobe epilepsy (TLE) is an indication for either DBS of the anterior nucleus of the thalamus (ANT) or temporal lobe (TL) RNS, but there are no studies that directly compare the seizure benefits and adverse effects associated with these therapies in this patient population. We, therefore, examined all patients who underwent ANT-DBS or TL-RNS for drug-resistant TLE at our center. METHODS: We performed a retrospective review of patients who were treated with either ANT-DBS or TL-RNS for drug-resistant TLE with at least 12 months of follow-up. Along with the clinical characteristics of each patient's epilepsy, seizure frequency was recorded throughout each patient's postoperative clinical course. RESULTS: Twenty-six patients underwent ANT-DBS implantation and 32 patients underwent TL-RNS for drug-resistant TLE. The epilepsy characteristics of both groups were similar. Patients who underwent ANT-DBS demonstrated a median seizure reduction of 58% at 12-15 months, compared to a median seizure reduction of 70% at 12-15 months in patients treated with TL-RNS (p > .05). The responder rate (percentage of patients with a 50% decrease or more in seizure frequency) was 54% for ANT-DBS and 56% for TL-RNS (p > .05). The incidence of complications and stimulation-related side effects did not significantly differ between therapies. SIGNIFICANCE: We demonstrate in our single-center experience that patients with drug-resistant TLE benefit similarly from either ANT-DBS or TL-RNS. Selection of either ANT-DBS or TL-RNS may, therefore, depend more heavily on patient and provider preference, as each has unique capabilities and configurations. Future studies will consider subgroup analyses to determine if specific patients have greater seizure frequency reduction from one form of neuromodulation strategy over another.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia , Estimulação Encefálica Profunda/métodos , Epilepsia Resistente a Medicamentos/terapia , Epilepsia/terapia , Epilepsia do Lobo Temporal/terapia , Humanos , Convulsões/terapia , Lobo Temporal , Resultado do Tratamento
5.
Epilepsia ; 60(2): 220-232, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30653657

RESUMO

OBJECTIVE: Magnetic resonance (MR) thermography-guided laser interstitial thermal therapy, or stereotactic laser ablation (SLA), is a minimally invasive alternative to open surgery for focal epilepsy caused by cerebral cavernous malformations (CCMs). We examined the safety and effectiveness of SLA of epileptogenic CCMs. METHODS: We retrospectively analyzed 19 consecutive patients who presented with focal seizures associated with a CCM. Each patient underwent SLA of the CCM and adjacent cortex followed by standard clinical and imaging follow-up. RESULTS: All but one patient had chronic medically refractory epilepsy (median duration 8 years, range 0.5-52 years). Lesions were located in the temporal (13), frontal (five), and parietal (one) lobes. CCMs induced magnetic susceptibility artifacts during thermometry, but perilesional cortex was easily visualized. Fourteen of 17 patients (82%) with >12 months of follow-up achieved Engel class I outcomes, of which 10 (59%) were Engel class IA. Two patients who were not seizure-free from SLA alone became so following intracranial electrode-guided open resection. Delayed postsurgical imaging validated CCM involution (median 83% volume reduction) and ablation of surrounding cortex. Histopathologic examination of one previously ablated CCM following open surgery confirmed obliteration. SLA caused no detectable hemorrhages. Two symptomatic neurologic deficits (visual and motor) were predictable, and neither was permanently disabling. SIGNIFICANCE: In a consecutive retrospective series, MR thermography-guided SLA was an effective alternative to open surgery for epileptogenic CCM. The approach was free of hemorrhagic complications, and clinically significant neurologic deficits were predictable. SLA presents no barrier to subsequent open surgery when needed.


Assuntos
Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/cirurgia , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Convulsões/cirurgia , Adolescente , Adulto , Idoso , Eletroencefalografia/métodos , Feminino , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Humanos , Terapia a Laser/efeitos adversos , Terapia a Laser/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Convulsões/complicações , Técnicas Estereotáxicas/efeitos adversos , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...